

International Journal of MC Square Scientific Research Vol.1, No.1,2009

84

 Review of Software Architectural styles for Artificial Intelligence

systems

 B.VINAYAGA SUNDARAM
1

1
Computer Center, MIT Campus Anna University Chromepet Chennai-600044, Tamilnadu India

Abstract:

Artificial Intelligence is the ability to process information properly in a complex environment.

The criteria of properness are not predefined and hence not available beforehand. They are acquired as a

result of information processing. The last decade, however, has seen an unprecedented interest in this

area, both within the research community and among software practitioners in the industry. In this

research, a new methodology is proposed to manage and structure the complexity of these systems, viz.

architecting the system in a proper way. An article presents the various software

architectural styles and its applications. The major contribution of paper is how to manage the increased

complexity of software intensive Artificial Intelligence systems. In particular, concerned with the

management of complexity of system whose structure exhibits some form of flexibility due to either

changes or failures.

Keywords: Artificial Intelligence, information processing, complexity, software architecture, Layered

systems

1. Introduction

Many human mental activities such as writing programs, solving mathematical problems,

engaging in common sense reasoning, understanding a language and even driving a car are said

to be intelligent activities. Over the past, many systems that have been built can perform these

tasks to a reasonable level. More specifically, there are systems that can diagnose diseases, prove

mathematical theorems, solve differential equations and even understand a limited amount of

International Journal of MC Square Scientific Research Vol.1, No.1,2009

85

human speech also. Such systems are said to possess some degree of intelligence. In the

context of biology, intelligence connects perception of the environment to actions that are

necessary for the goals of life. Intelligence is the computation in the service of life, just as

metabolism is chemistry of life. Intelligence does not imply perfect understanding and every

intelligent being has a limited perception, memory and computational capability. AI seeks to

understand the computations required for intelligent behavior and to build computer systems that

exhibit some degree of intelligence. In practical terms, AI means ability to automatically perform

activities that require human operators. An AI system should also exhibit the following features:

(i) It should have the flexibility in dealing with variability in the environment

in an appropriate manner.

(ii) It should have more autonomy and less human intervention or monitoring.

(iii) It should understand what the user wants from limited instructions.

(iv) It should improve its performance by learning from experience.

 The definition according to Hideyuki Nakashima (Nakashima 1999), for Intelligence is

as follows:“Intelligence is the ability to process information properly in a complex environment.

The criteria of properness are not predefined and hence not available beforehand. They are

acquired as a result of information processing”.The key concept is that the properness of the

information is not predetermined. The essence of intelligence lies in symbolic processing. Even

though human intelligence is unlikely to consist solely of symbolic processing, still it relies on

symbols. AI can be included as a sub-field of information processing, but with a major crucial

difference. In information processing complete processing is presupposed whereas in AI it is

neither presupposed nor even possible. The essence of intelligence lies in the method of

processing complex information as little as necessitated by the environment. That is a small

portion of the complex information is sufficient to process it adequately. Stuart Russell (Russell

1995) defines AI as the study of bounded optimality, or the ability of the system to generate

International Journal of MC Square Scientific Research Vol.1, No.1,2009

86

maximally successful behavior given the available information and computational resources.

One of the important approaches in complex information processing in AI is heuristics. The term

heuristics refers to a method that succeeds in normal cases but is not guaranteed to do so. This

term can be synonymously used with ad-hoc method. Heuristics is one of the central and

essential aspects of AI.

2. SYSTEMS AND AI

In the previous section, it is stated that AI is the study of complex information

processing. Simple systems are not intelligent, but conversely, being complex is by no means a

sufficient condition for intelligence. A complex system is usually composed of many elements,

which interact with one another. The complexity of the system is proportional to various factors

such as the number of elements, the number of interactions in the system, and the complexities of

the elements and their interactions. In naturally complex systems, every element is also complex

in nature. The global behavior of the system arises from the interactions of these elements of the

system. In this sense, we can say that a complex system is more than the sum of its parts. A

complex system has properties not present in its parts. These properties are called emergent.

They emerge from the interactions of the components of the system. These are specialized

components together with logic-based languages that can express propositions and speech acts

about these propositions (Sowa 2002). There are no efficient methodologies for designing and

maintaining complex systems. It is claimed that evolution is one of the proven methodologies to

build a complex system. This may work if the aim is to exhibit complex behavior. However, the

primary goal is to design and implement an intelligent system. The question of building an

intelligent system by evolution can be answered in two ways. Firstly, it is possible to build an

intelligent system provided sufficient time is given. Secondly, it takes to long to be practical.

Hence, we need a design methodology for building AI systems, which are large and complex in a

quicker way. In this research, a new methodology is proposed to manage and structure the

complexity of these systems, viz. architecting the system in a proper way. In

International Journal of MC Square Scientific Research Vol.1, No.1,2009

87

the proposed method, hybrid-layered software architecture for AI system is designed and

implemented to manage and structure the complexity.

3. Software Architecture

The structure and organization of software systems have been discussed, to a certain

extent, since the late 1960s. A well-known example from the early literature on this topic is an

influential and popular article by Parnas (1972). The last decade, however, has seen an

unprecedented interest in this area, both within the research community and among software

practitioners in the industry. In one of the papers in the literature of software architecture (Perry

et al 1992), it has been claimed that software design, while receiving much attention in the

1970s, was largely overlooked during the 1980s. This paper uses the term software architecture

instead of design to evoke notions of a professional discipline and to make analogies with other

fields, such as construction engineering and computer architecture. Software architecture of a

system describes the structure, organization of components/ modules and their interactions not

only to satisfy the systems‟ functional and non-functional requirements but also to provide

conceptual integrity to the overall system structure.

Software architecture is concerned with the structure of large software intensive systems

(David Garlan 2000). The architectural view is an abstract view that separates the details of

implementation, algorithm and data representation and concentrates on behavioral aspects and

interaction among the various components. In other words, the software architecture is a high-

level design specification of the system, which provides an abstract description of the system by

exposing certain properties and hiding others (Rikard Land 2002).

Hence, the software architecture plays an important function with respect to following

aspects in the development of large software intensive systems:

International Journal of MC Square Scientific Research Vol.1, No.1,2009

88

(i) Understandability: It helps to understand a large system by the appropriate level

of abstraction. It also exposes the high-level design constraints, thereby providing a way for

making architectural decisions.

(ii) Reusability: Architectural designs support the reuse of large components and

provide framework into which components can be integrated.

(iii) Construction: An architectural description provides a blue print for the

development of a system indicating the major components and the relationships amongst them.

(iv) Evolution: The architectural description of a system separates the functionality

from implementation, thereby permitting us to manage the concerns regarding performance,

reusability and prototyping in an easy way.

(v) Analysis: The architectural description provides a new attribute for analyzing the

system with respect to quality, performance, dependency etc,. Moreover, analysis of

architectures built with different styles can also be made to arrive at good architectural design

decisions (Hasan Reza et al 2005).

(vi) Management: Successful development of software addressing specific application

depends on critical selection, analysis and evaluation of software architecture.

4. Definitions Of Software Architecture

qThe recent interest in the field has resulted in variety of definitions for software architecture.

This section presents and discusses some of the most influential of these definitions. Perry and

Wolf (1992) presents the following model of software architecture:

Software Architecture = {Elements, Form, Rationale}.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

89

The elements of architecture can be processing elements, data elements, or connecting

elements (which may themselves be processing elements or data elements or both). The form

specifies constraints on elements and their interactions among each other. The rationale provides

motivations on the choice of elements and the form. Although, nobody seems to question the

value of documenting the rationale for software architecture, more recent definitions tend to view

rationale as not being part of the architecture itself. In the first book on the topic (Shaw et al

1996), the software architecture of system is defined, as a collection of computational

components–or simply components–together with a description of the interactions among these

components–the connectors. This definition inspired the practitioners and tends to represent

software architectures informally in the form of box and line diagrams. For such diagrams to be

useful for others than their creators, it is important that the meanings of both the boxes

(components) and the lines (connectors) are described.

The terminology and definitions of Shaw and Garlan (1995) have become widely adopted

within the field. It has also been somewhat criticized, however, for instance in a book by staff

members from the Software Engineering Institute (SEI) (Bass et al 2003) The authors argue that

the term connector is inappropriate since it indicates a run-time mechanism, while software

architecture also covers structures that are not observable at run-time. In the second edition of the

book, the term component is also avoided since it has become so closely associated with the

topic of component-based software engineering, wherein components are usually viewed as run-

time entities. The latest edition of the SEI book uses the following working definition:

“The software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible properties of

those elements, and the inter relationships among them”.This definition has some interesting

aspects. The notion that a system may have multiple structures is closely related to the concept of

architectural views, which is now widely accepted by the research community and in industry.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

90

The definition further, states that architecture includes the externally visible properties of

components, implying that other component properties are not part of the architecture. Finally, a

recommended practice for architectural documentation from the Institute of Electrical and

Electronics Engineers (IEEE 2003) defines architecture as:

“The fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its design and

evolution".

The main focus of this definition is its mention of the system‟s environment. This is also

an example of a process-oriented definition that includes design and evolution principles. As is

the case with rationale, the majority of the literature seems to consider such principles to be

important but distinct from the architecture itself.

5. Architectural Design

 It was described earlier how Perry and Wolf (1992) selected to use the term software

architecture instead of the more traditional term software design. The question still arises,

however, as to the precise relationship between architecture and design. A more general view

which is expressed in the literature by the most popular work by Clements et al 2002 as

'architecture is design, but not all design is architecture'. In other words, a system‟s software

architecture comprises some, but not all, the decisions made in the design of the system. The

definitions presented in the previous section do, to varying degrees, specify which types of

design decisions architecture should include. It can generally be said that software architecture is

concerned with high-level design decisions that are made at an early stage of the design process.

The term architectural design is often used to characterize structural issues concerned during the

process such as: global control structures; the protocols for communication, synchronization, and

data access; the assignment of functionality to design elements; the composition of design

elements; physical distribution; scaling and performance; dimensions of evolution; and selection

International Journal of MC Square Scientific Research Vol.1, No.1,2009

91

among design alternatives from design solution space (Ince et al 1998). The SEI book (Bass

2003) presents guidelines for making architectural decisions that help to ensure a system‟s

quality properties. Decisions that target particular properties are called architectural tactics. For

example, fault-tolerance is an availability tactic and information hiding is a modifiability tactic.

A set of related tactics is called an architectural strategy. Bosch (2000) suggests a method of

architectural design wherein an initial architecture is designed based on the system‟s functional

requirements. The architecture is then evaluated against the non-functional requirements for the

system and transformed if necessary(LawrenceChung et al 1999). Various architecture analysis

methods are proposed (Liliana Dobrica e al 2002). This process of evaluation and transformation

is applied iteratively until the architecture is believed to meet all functional and non-functional

requirements. An approach developed by Siemens Corporate Research (Hofmeister et al 2000)

focuses on identifying factors that influence architectural issues, which are classified into

technical, organizational, and product factors. Based on analyses of these factors, strategies are

determined to resolve the issues. The early design of a system‟s architecture is also a central

concept in the Rational Unified Process (Kruchten 2000). In this influential process model, a

stable architecture is the main milestone of the elaboration phase, which precedes the labor-

intensive construction phase. In all engineering disciplines, successful solutions to past problems

are often used as models when new problems are to be solved. This is also true for software

architecture, where architects have primarily drawn on their own experiences or that of their

development organizations. The research community has realized the benefit of having a

collection of well-documented prototype solutions.

The term architectural style is used to denote such a prototype solution. This term have

also been used by Shaw and Garlan (1996). Drawing on their definitions of software architecture,

the following definition of architectural style is given below:

 • Pipes and filters: The components in this style are called filters and each has a set of

inputs and a set of outputs. The outputs of a filter can be attached to inputs of other filters via

International Journal of MC Square Scientific Research Vol.1, No.1,2009

92

simple connectors called pipes as shown in Figure 1.1. Typically, the filters transform streams of

input data to streams of output data in an incremental fashion. An important constraint is that

filters should be independent in the sense that they do not share state and each filter is unaware

of the identities of the other filters it is connected to.

Figure 1.1 Pipe and filter architecture

• Layered systems: The components in this style are called layers and are commonly

thought of as being stacked on top of each other as illustrated in Figure 1.2. Each layer provides

services to the layer above it and is a client of the layer below it. The connectors are defined by

International Journal of MC Square Scientific Research Vol.1, No.1,2009

93

the protocols used between the layers. A variation of the style is systems where a layer may use

the services provided by all lower layers.

Figure 1.2 Layered architecture

• Data centered architectures: In this style, there are two distinct types of components: a

central data store that represents the state of the system and a set of independent components that

operate on the data store as depicted in Figure 1.3. An interesting sub-style is systems where

computation is entirely controlled by the state of the data store and the independent components

react to changes to this state in an opportunistic fashion

International Journal of MC Square Scientific Research Vol.1, No.1,2009

94

Figure 1.3 Data centered architecture

International Journal of MC Square Scientific Research Vol.1, No.1,2009

95

Figure 1.4 Object oriented architecture

Surjati Typically, the sets of components and connectors are dynamic, since objects can

create and delete other objects and object references can be passed as parameters to operations.

• Event-based systems: The components in this style have interfaces that provide

both operations and events. A component‟s operations may be invoked directly by other

components as in object-oriented systems as illustrated in Figure 1.5. In addition, a component

may register an interest in an event that another component provides by associating one of its

own operations with it. When the second component subsequently announces the event, the

registered operation is invoked, along with any operations that other components have registered.

Thus, there are two distinct types of connectors in this style. A valuable property of these and

other common styles is that the consequences of using them as the basis for a system‟s software

architecture are fairly well understood. The pipes and filters style, for instance, results in systems

of highly independent components, where filters can suitably be developed and tested separately

and possibly reused in different configurations. A possible disadvantage is that all filters have to

comply with the data format required by the pipes, which may not be optimally suited for their

computation and result in loss of performance and increased internal complexity.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

96

Figure 1.5 Event based architecture

An advantage of object-oriented systems is that algorithms and data representation are

encapsulated such that it can be maintained locally. On the other hand, system wide

modifications, such as adding new objects, can be difficult since objects need to know the

identity of other objects in order to invoke their operations. Event-based systems represent a

possible solution to this problem, although the components are not as independent as in the pipes

and filters style. A common approach in practice is that systems can incorporate several

architectural styles. For instance, a system may have components and connectors that match the

types defined by several styles. An example is a layered event-based system where each layer

provides both operations and events to the layer(s) above it. Another way to combine styles is to

mix different components and connectors in the same system, which is sometimes called

heterogeneous architectures (Pressman 2006). For instance, a part of a system could be organized

as a repository wherein one or more of the independent components exchange data with another

part of the system that consists of pipes and filters. Hierarchical heterogeneity occurs when a

component in a system of one style is internally organized using another style. A common

example is a layer containing an object structure, which may even be reflected in the layer‟s

services.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

97

A popular approach within the software engineering community is the use of object-

oriented design patterns (Gamma et al 1995). Since architecture is commonly viewed as a special

case of design, it is not surprising that the patterns paradigm has also been applied to

architectural design. The most comprehensive work in this area has been done by at the German

company Siemens, and this approach is called pattern-oriented software architecture (Bushmann

et al 1996). As with other design patterns, this effort focuses on cataloging known solutions to

known problems in given contexts. This approach is similar that of identifying and documenting

architectural styles, and there is now a widespread view that patterns and styles are synonymous.

6. Conclusion

This paper presents the various software architectural styles and its applications. The

major contribution of this paper is how to manage the increased complexity of software intensive

AI systems. In particular, concerned with the management of complexity of system whose

structure exhibits some form of flexibility due to either changes or failures. The main limitation

in the present method of approach on software architecture is the lack of comprehensiveness in

the design and implementation of layered software architecture for AI system has been addressed

in the proposed method. By comprehensive approach, we mean a component oriented

architectural description with:

Detailed description of the system.

(i) Clarification of desired level of flexibility in the architecture and the relation of

flexibility to application semantics.

(ii) Formalism of environment requirements.

(iii) Evaluation of the software in the architecture in terms of their functional

requirements and nonfunctional requirements.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

98

References

1. Abhay Kothari and Ramani A.K. (2006), „Qualitative Assessments of Software Architectures

of Configuration Management systems‟, Journal of Computer Science, Vol.2, No.1, pp.07-12.

2.Adnan Rawashdeh and Bassem Matalkah (2006), „A New Software Quality Model for

Evaluating COTS component‟, Journal of Computer Science, Vol.2, No.4, pp.373-383.

3. Surjati, 3. Androutsopoulos I., Koutsias J., Chandrinos K.V. and Spyropoulos C.D. (2000),

Experimental Comparison of Naive Bayesian and Keyword Based Anti-spam filtering with

personal e-mail messages‟, Proc. of SIGIR-00, 23rd ACM International

Conference on Research and Development in Information Retrieval, Athens,Greece, pp.160-167.

4. Arkin R.C. (1990), „Integrating Behavioral, Perceptual, and world knowledge in reactive

navigation‟, Journal of Robotics and automation, Vol.6, pp.105-122 Elsevier Publishers.

5. Babloyantz A. (1986), „Molecules, Dynamics and Life. An Introduction to Self- Organization

of Matter‟, II Edition, Wiley and Sons.

6. Bass L., Clements P. and Kazman R. (2003), „Software Architecture in Practice‟, II Edition ,

Addison-Wesley.

7. Belkin N.J. and Croft W.B. (1992), „Information Filtering and Information Retrieval: Two

Sides of the Same Coin?‟, Communications of ACM, Vol.35, No.12, pp.29-38.

8. Surjati, 3. Androutsopoulos I., Koutsias J., Chandrinos K.V. and Spyropoulos C.D. (2000),

Experimental Comparison of Naive Bayesian and Keyword Based Anti-spam filtering with

personal e-mail messages‟, Proc. of SIGIR-00, 23rd ACM International

Conference on Research and Development in Information Retrieval, Athens,Greece, pp.160-167.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

99

9. Bonasso R.P., Kortenkamp D., Miller D.P. and Slack M. (1996), „Experiences with an

Architecture for Intelligent, Reactive Agents, Intelligent Agents‟, Proc. of the 1995 Workshop

on Agent Theories, Architectures, and Languages (ATAL-95), Lecture Notes in Artificial

Intelligence Springer-Verlag, Vol.1037, pp.187-202.

10.Booch G. (1994), „Object-Oriented Analysis and Design with Applications‟, II Edition,

Addison-Wesley.

11.Bosch J. (2000), „Design and Use of Software Architectures‟, I Edition, Addison- Wesley.

12.Burmeister B. and Sundermeyer K. (1992), „Cooperative Problem-Solving Guided by

Intentions and Perception‟, Decentralized A.I., Vol.3, pp.36-47.

13.Bushmann F., Meunier R., Rohnert H., Sommerlad P. and Stal M. (1996),Pattern-

Oriented Software Architecture - A System of Patterns‟, I Edition, John Wiley & Sons.

14.Castelfranchi C. (1995), „Guarantees for Autonomy in Cognitive Agent Architecture, in

Intelligent Agents: Theories, Architectures, and Languages‟, Springer-Verlag: Heidelberg,

Germany, Lecture notes in Artificial Intelligence, Vol.890, pp.56-70.

15.Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little R., Nord R. and Stafford J.

(2002), „Documenting Software Architectures: Views and Beyond‟, I Edition, Addison-Wesley.

16.David Garlan (2000), „Software Architecture: a Roadmap‟, In the future of Software

Engineering, pp.91-101, ACM press.

17.David Ramamonjiso and Issam A. Hamid (1999), „Design and Implementation of Multi

Agent for Intelligent Software‟, IEEE Computer society, pp.268-271.

18.Dolores Del Castillo and Jose Ignacio Serrano (2004), „A Multistrategy Approach for Digital

Text Categorization from Imbalanced Documents‟, Sigkdd Explorations, Vol.6, No.1, pp.70-77.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

100

19.Drucker H., Wu D. and Vapnik V. (1999), „Support Vector Machines for Spam

Categorization‟, IEEE Trans. on Neural Networks, Vol.10, No.5, pp.1048-1054.

20.Elaine J. Weyuker (1999), „Evaluation Techniques for Improving the Quality of Very large

Software Systems in Cost Effective Way‟, The Journal of Systems and Software, pp.97-103.

