

International Journal of MC Square Scientific Research Vol.1, No.1,2009

39

High Speed Pipelined Architecture for Adaptive Median Filter

 A. Mohamed Mian
1

Assistant Professor Assistant Professor Department of ECE

Abdul Hakeem College of Engineering and Technology

Vellore, India

Abstract

 Low level data processing functions, like FIR filtering, pattern recognition or correlation,

where the parallel implementation is supported by architecture matched special purpose

arithmetic; high throughput FPGA circuits easily outperform even the most advanced DSP

processors. In this paper investigates a high-speed non- linear Adaptive median filter

implementation is presented. Then Adaptive Median Filter solves the dual purpose of removing

the impulse noise from the image and reducing distortion in the image. Adaptive Median

Filtering can achieve the filtering operation of an image corrupted with impulse noise of

probability greater than 0.2.

Keywords: Salt and Pepper, Adaptive, Pipeline, FIFO, Rank order, Non linear.

1. Introduction

Median filtering is a powerful instrument used in image processing. The traditional

median filtering algorithm, without any modifications gives good results. There are many

variations to the classical algorithm, aimed at reducing computational cost or to achieve

additional properties[1]. Median filters are used mainly to remove salt-and pepper noise. Doing

this, they preserve edges in the image (preserve their location and do not affect their steepness,

unlike Gaussian filters), but unfortunately median filtering may destroy small features in the

image[2]. A way to avoid it is to apply center- weighted median filtering instead of a plain

median, but the drawback of this solution is the detoriation of the filter’s ability to suppress

impulse noise[3].

Common drawback of various kinds of the median filtering is their computational cost[4].

Computing a two-dimensional median for an NxN window, requires sorting of NxN elements for

every image pixel and choosing the median value for the output[5]. After the sorting, each queue

element is assigned a value called a rank, specifying its position in the queue as a result of

sorting[6].

International Journal of MC Square Scientific Research Vol.1, No.1,2009

40

Therefore, using median filtering in any real- time vision system requires a significant

computational power. One way to speed up the computations is to implement the algorithm in

hardware, e.g. with the help of FPGA circuits. The rationale behind this is to use the FPGA’s

inherent ability to execute operations in parallel. Moreover, programmable logic creates the

possibility to tailor the implementation to the user’s needs. All these results are in a significant

speedup over the software implementations by using sequential processors. One drawback of

hardware-based algorithm development is the complexity of the design process as implementing

algorithmically complex operations is very difficult. Median filtering, like many other low-level

image processing algorithms is fairly simple - the main problem in this case is the amount of data

to handle.

2. Median Filter

 Median filtering is a non-linear, low-pass filtering method, which you use to remove

“speckle” noise from an image. A median filter can outperform linear, low-pass filters on this

type of noisy image because it can potentially remove all the noise without affecting the "clean"

pixels. Median filters remove isolated pixels, While a hardware system and a matrix-

manipulating software program are fundamentally different, they can produce identical results,

provided that care is taken in development. This approach was taken because it speeds

understanding of the algorithm design. In addition, this approach facilitates comparison of the

software and synthesized hardware algorithm outputs. This project is focused on developing

hardware implementations of image processing algorithm for use in an FPGA based image

processing system. The rank order filter is a particularly common algorithm in image processing

systems.. For every pixel in an image, the window of neighboring pixels is found. Then the pixel

values are sorted in ascending, or rank, order. Next, the pixel in the output image corresponding

to the origin pixel in the input image is replaced with the value specified by the filter order. The

VHDL code can be simulated to verify its functionality. The Implementation of a 3 × 3 filter

window is shown in figure 1.

Figure. 1Implementation of a 3 × 3 filter window

3. Adaptive Median Filter

International Journal of MC Square Scientific Research Vol.1, No.1,2009

41

The Adaptive Median Filter is designed to eliminate the problems faced with the standard

median filter. The basic difference between the two filters is that, in the Adaptive Median Filter,

the size of the window surrounding each pixel is variable. This variation depends on the median

of the pixels in the present window. If the median value is an impulse, then the size of the

window is expanded. Otherwise, further processing is done on the part of the image within the

current window specifications. ‘Processing’ the image basically entails the following: The center

pixel of the window is evaluated to verify whether it is an impulse or not. If it is an impulse, then

the new value of that pixel in the filtered image will be the median value of the pixels in that

window. If, however, the center pixel is not an impulse, then the value of the center pixel is

retained in the filtered image. Thus, unless the pixel being considered is an impulse, the gray-

scale value of the pixel in the filtered image is the same as that of the input image. Thus, the

Adaptive Median Filter solves the dual purpose of removing the impulse noise from the image

and reducing distortion in the image. Adaptive Median Filtering can handle the filtering

operation of an image corrupted with impulse noise of probability greater than 0.2. This filter

also smoothens out other types of noise, thus, giving a much better output image than the

standard median filter.

4. Moving Window Architecture

 In order to implement a moving window system in VHDL, a design was devised that

took advantage of certain features of FPGAs. FPGAs generally handle flip -flops quite easily, but

instantiation of memory on chip is more difficult. Still, compared with the other option, off-chip

memory, the choice using on-chip memory was clear. It was determined that the output of the

architecture should be vectors for pixels in the window, along with a data valid signal, which is

used to inform an algorithm using the window generation unit as to when the data is ready for

processing. Since it was deemed necessary to achieve maximum performance in a relatively

small space, FIFO Units specific to the target FPGA were used. Importantly though, to the

algorithms using the window generation architecture, the output of the window generation units

is exactly the same. This useful feature allows algorithm interchangeability between the two

architectures, which helped significantly, cut down algorithm development time. A window size

was chosen because it was small enough to be easily fit onto the target FPGAs, and is considered

large enough to be effective for most commonly used image sizes. With larger window sizes,

more FIFOs and flip -flops must be used, which increases the FPGA resources used significantly.

Figure 2, 3 shows a graphic representation of the FIFO and flip flop architecture used for this

design for a given output pixel window.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

42

Figure.2 Moving Window Architecture

Figure.3 Reading Pixels from Window

5. Parallel Sorting Strategy

 To make a fair comparison of the parallel sorting strategy against wave sorter strategy in

terms of the total number of required steps to sort an array, it is necessary to consider the steps

used to read data from memory and the steps required to store the sorted data back to memory.

The proposed approach is based on the same structure of the registers array used in the

wave sorter strategy. With this kind of array, data can be stored in the array by sending a datum

to the first register and later, when the second datum is sent to the first register, the value on the

first array is shifted to the second register. If k sorts are required, then the parallel sorting

requires to ((n+n/2) * k + n) to sort an array of n data. The figure 4 shows the parallel sorting

with two levels of comparators performance. Thus total number of steps required can be obtained

by the following equation:

Figure. 4 Parallel sorting with two levels of comparators performance

The parallel strategy leads to a significant reduction compared to the wave sorter
approach. Furthermore, in additional sorts the necessary number of steps for sorting is equal to
the number of characters in the biggest group of identical characters divided by 2 (remember that
an additional sorting is implied if groups of identical adjacent characters appear in the

International Journal of MC Square Scientific Research Vol.1, No.1,2009

43

array).This implies that in practice, it is possible to reduce more than the number of steps to
solve the suffix problem.

 6. Implementation and Testing

The adaptive filter works on a rectangular region Sxy. The adaptive median filter changes

the size of Sxy during the filtering operation depending on certain criteria as listed below. The

output of the filter is a single value which the replaces the current pixel value at (x, y), the point

on which Sxy is centered at the time. The following notation is adapted from the book and is

reintroduced here:

Zmin = Minimum gray level value in Sxy.

Zmax = Maximum gray level value in Sxy

Zmed = Median of gray levels in Sxy

Zxy = gray level at coordinates (x, y)

Smax = Maximum allowed size of Sxy

The adaptive median filter works in two levels denoted Level A and Level B as

follows:

Level A: A1= Zmed - Zmin

 A2= Zmed – Zmax

If A1 > 0 AND A2 < 0, Go to

Level B

Else increase the window size

If window size <= Smax repeat

Level A

 Else output Zxy.

Level B:

B1 = Zxy – Zmin

B2 = Zxy – Zmin

If B1 > 0 and B2 < 0 output Zxy Else output Zmed.

7. Result

The adaptive median filter is designed to remove impulsive noise from images.
Therefore, our algorithm’s performance was first tested with basic salt and pepper noise with a
noise density of 0. 25. The next test involves processing images that contain impulsive and/or
non- impulsive noise. It is well known that the median filter does not provide sufficient
smoothening of non-impulsive noise. Therefore, Gaussian and ‘salt and pepper’ noise were
added to the image which was then processed by the algorithm. The Figure 5 shows the
performance of the adaptive median filter.

International Journal of MC Square Scientific Research Vol.1, No.1,2009

44

Figure. 5 Results of filtering with a 3X3 median and conditional median filter. From left to

right, first row: original Image, noisy image; second row: standard median filter, Adaptive

median filter.

8. Conclusion

The architecture is pipelined which processes one pixel per clock cycle, thus to process

an image of size 256 x 256 it requires 0.65 ms when a clock of 100 MHz is used and hence is

suitable for real time applications The adaptive median filter successfully removes impulsive

noise from images. It does a reasonably good job of smoothening images that contain non-

impulsive noise. Overall, the performance is as expected and the successful implementation of

the adaptive median filter is presented.

References

1. Zdenek Vasicek, Lukas Sekanina, “Novel Hardware Implementation of Adaptive Median

Filters.” IEEE.2015.

2. Olli Vainio, Yrjö Neuvo, Steven, and E. Butner, “A Signal Processor for Median-Based

Algorithms”, IEEE Transactions on Acoustics, Speech, Processing, vol .37, no.9, 1989.

3. Bapeswara Rao, V.V, and K. Sankara Rao, “A New Algorithm for Real-Time Median

Filtering”, IEEE Transactions on Acoustics, Speech, Processing, vol. 34, no. 6, 1986.

4. Ahmad, M. O, and D. Sundararajan, “Parallel Implementation of a Median Filtering

Algorithm”, Int. Symp. on Signals and Systems, 1988.

5. Dobrowiecki Tadeusz, Medián Szűrők, and Mérés és Automatika, 37. Évf., 1989. 3.szám

6. Xilinx Foundation Series Quick Start Guide, 1991-1997. Xilinx. Inc

