

International Journal of MC Square Scientific Research Vol.2, No.1 2010

22

Issn.No:0975-0932

DESIGN OF NOVEL ARCHITECTURE OF FILTER TO REMOVAL OF NOISE IN

DIGITAL IMAGE

Abstract

Evolvable hardware (EH) is a new field about the use of evolutionary algorithms (EA). It

brings together reconfigurable hardware, artificial intelligence, fault tolerance and autonomous

systems. Evolvable hardware refers to hardware that can change its architecture and behavior

dynamically and autonomously by interacting with its environment This paper represent as a new

technique for the design of Adaptive Median Filter within an Evolvable hardware framework,

using genetic algorithm (GA), aimed at removing the impulse noise from the image and reducing

distortion in the image. This implementation aims at reducing the number of generations required

to provide time bound optimal filter configuration and to improve the quality of the filter

designed. The GA processing and the Evolvable hardware framework is synthesized on Xilinx .

In this paper investigates a high-speed non-linear Adaptive median filter implementation is

presented. Then Adaptive Median Filter solves the dual purpose of removing the impulse noise

from the image and reducing distortion in the image. Adaptive Median Filtering can achieve the

filtering operation of an image corrupted with impulse noise .

1 Introduction

Reconfigurable hardware devices make it possible to change the topology of electronic

circuits at runtime. Using reconfigurable devices as a platform for Evolvable hardware (EHW) is

well suited for real-time adaptive systems. EHW is a scheme inspired by natural evolution, for

automatic design of hardware systems. It refers to hardware that can change its architecture and

behavior dynamically and autonomously by interacting with its environment. It is built on top of

reconfigurable logic devices, whose architecture can be reconfigured by using Evolutionary

Algorithms (EA). The reconfigurable device acts as the design space for the EA, which then

http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Fault_tolerance
http://en.wikipedia.org/wiki/System

International Journal of MC Square Scientific Research Vol.2, No.1 2010

23

Issn.No:0975-0932

determines the optimum hardware configuration required for a particular design specification.

EHW is best suited for cases where the design specification doesn't provide sufficient

information to permit using conventional design methods [2]. For example, the specification may

only state desired behavior of the target hardware. In other cases an existing circuit must adapt,

i.e. modify its configuration, to compensate for faults or perhaps a changing operational

environment. For instance, deep-space probes may encounter sudden high radiation

environments and alter a circuit's performance; the circuit must self-adapt to restore as much of

the original behavior as possible and quickly. In this work, a reconfigurable median filter

constitutes the backbone of the Noise redection. A genetic algorithm based implementation of

meadin filter to cancel out the interference from the varied noise sources and abstract the original

signal is presented in this work. Both the filter as well as the hardware required for evolution is

implemented in a single Field programmable gate array (FPGA). The circuit is based on context-

switching in FPGA-devices and preliminary results indicate the use of a compact hardware as

well as fast adaptation. The proposed evolvable architecture for ANC is very effective, resulting

in significant improvement in terms of reproduced signal quality. The entire system is

synthesized on a Xilinx Virtex XCV1000 FPGA. As the entire filter, including the FIFO, and the

delay elements, are realized on the reconfigurable fabric, a more optimum filter is realized (using

fewer resources) for a given frequency response. Median filtering is a powerful instrument used

in image processing. The traditional median filtering algorithm, without any modifications gives

good results. There are many variations to the classical algorithm, aimed at reducing

computational cost or to achieve additional properties. Median filters are used mainly to remove

salt-and pepper noise. Doing this, they preserve edges in the image (preserve their location and

do not affect their steepness, unlike Gaussian filters), but unfortunately median filtering may

destroy small features in the image. A way to avoid it is to apply center-weighted median

filtering instead of a plain median, but the drawback of this solution is the detoriation of the

filter‟s ability to suppress impulse noise. Common drawback of various kinds of the median

filtering is their computational cost. Computing a two-dimensional median for an NxN window,

requires sorting of NxN elements for every image pixel and choosing the median value for the

International Journal of MC Square Scientific Research Vol.2, No.1 2010

24

Issn.No:0975-0932

output. After the sorting, each queue element is assigned a value called a rank, specifying its

position in the queue as a result of sorting.

Therefore, using median filtering in any real-time vision system requires a significant

computational power. One way to speed up the computations is to implement the algorithm in

hardware, e.g. with the help of FPGA circuits. The rationale behind this is to use the FPGA‟s

inherent ability to execute operations in parallel. Moreover, programmable logic creates the

possibility to tailor the implementation to the user‟s needs. All this results in a significant

speedup over the software implementations by using sequential processors. One drawback of

hardware-based algorithm development is the complexity of the design process as implementing

algorithmically complex operations is very difficult. Median filtering, like many other low-level

image processing algorithms is fairly simple - the main problem in this case is the amount of data

to handle.

Fig 1 Adaptive Median Filter

2. Adaptive Median Filter

The Adaptive Median Filter is designed to eliminate the problems faced with the standard

median filter. The basic difference between the two filters is that, in the Adaptive Median Filter,

International Journal of MC Square Scientific Research Vol.2, No.1 2010

25

Issn.No:0975-0932

the size of the window surrounding each pixel is variable. This variation depends on the median

of the pixels in the present window. If the median value is an impulse, then the size of the

window is expanded. Otherwise, further processing is done on the part of the image within the

current window specifications. „Processing‟ the image basically entails the following: The center

pixel of the window is evaluated to verify whether it is an impulse or not. If it is an impulse, then

the new value of that pixel in the filtered image will be the median value of the pixels in that

window. If, however, the center pixel is not an impulse, then the value of the center pixel is

retained in the filtered image. Thus, unless the pixel being considered is an impulse, the gray-

scale value of the pixel in the filtered image is the same as that of the input image. Thus, the

Adaptive Median Filter solves the dual purpose of removing the impulse noise from the image

and reducing distortion in the image. Adaptive Median Filtering can handle the filtering

operation of an image corrupted with impulse noise of probability greater than 0.2. This filter

also smoothens out other types of noise, thus, giving a much better output image than the

standard median filter as Shown in Fig1 .

3. Evolvable Hardware

3.1 Evolvable Hardware Concepts

Evolvable hardware is based on the idea of combining reconfigurable devices with

evolutionary

algorithms such as Genetic Algorithms [3,4]. The basic concept in EHW is to regard the

configuration bits for reconfigurable hardware devices as chromosomes for GA. By choosing an

appropriate fitness function for the given task, GA can autonomously find the best hardware

configuration in terms of chromosomes i.e. configuration bits. The algorithm for evolving

circuits on a reconfigurable fabric is shown in Fig. 2

International Journal of MC Square Scientific Research Vol.2, No.1 2010

26

Issn.No:0975-0932

Fig 2 Block Diagram of EHW

Evolvable hardware problems fall into two categories: original design and adaptive

systems. Original design uses evolutionary algorithms to design a system that meets a predefined

specification. Adaptive systems reconfigure an existing design to counteract faults or changed

operational environment. Original design of digital systems is not of much interest because

industry already can synthesize enormously complex circuitry. For example, one can buy IP to

synthesize USB port circuitry, Ethernet microcontrollers and even entire RISC processors. Some

research into original design still yields useful results, for example genetic algorithms have been

used to design logic systems with integrated fault detection that out perform hand designed

equivalents. Original design of analog circuitry is still a wide-open research area. Indeed, the

analog design industry is nowhere near as mature as is the digital design industry. Adaptive

systems have been an area of intense interest in the recent past.

The fitness of an evolved circuit is a measure of how well the circuit matches the design

specification. Fitness in evolvable hardware problems is determined via two methods:-

1) Extrinsic evolution: All circuits are simulated to see how they perform

2) Intrinsic evolution: Physical tests are run on actual hardware.

International Journal of MC Square Scientific Research Vol.2, No.1 2010

27

Issn.No:0975-0932

In off-line fitness computation (OFL) or Extrinsic evolution, the evolution is simulated in

software, and only the elite chromosome is written to the hardware device. In online Fitness

Computation (ONL), the hardware device gets configured for each chromosome for each

generation (sometimes named intrinsic evolution). GA is the most commonly used evolutionary

algorithm and uses biological operators like crossover and mutation .

4. Moving Window Architecture

In order to implement a moving window system in VHDL, a design was devised that took

advantage of certain features of FPGAs. FPGAs generally handle flip -flops quite easily, but

instantiation of memory on chip is more difficult. Still, compared with the other option, off-chip

memory, the choice using on-chip memory was clear. It was determined that the output of the

architecture should be vectors for pixels in the window, along with a data valid signal, which is

used to inform an algorithm using the window generation unit as to when the data is ready for

processing. Since it was deemed necessary to achieve maximum performance in a relatively

small space, FIFO Units specific to the target FPGA were used. Importantly though, to the

algorithms using the window generation architecture, the output of the window generation units

is exactly the same. This useful feature allows algorithm interchangeability between the two

architectures, which helped significantly, cut down algorithm development time. A window size

was chosen because it was small enough to be easily fit onto the target FPGAs, and is considered

large enough to be effective for most commonly used image sizes. With larger window sizes,

more FIFOs and flip -flops must be used, which increases the FPGA resources used significantly.

Figure 1, 2 shows a graphic representation of the FIFO and flip flop architecture used for this

design for a given output pixel window as Shown in Fig 3 & 4 .

International Journal of MC Square Scientific Research Vol.2, No.1 2010

28

Issn.No:0975-0932

Fig.3 Moving Window Architecture

Fig. 4 Reading Pixels from Window.

5. Parallel Sorting strategy:

To make a fair comparison of the parallel sorting strategy against wave sorter strategy in

terms of the total number of required steps to sort an array, it is necessary to consider the steps

used to read data from memory and the steps required to store the sorted data back to memory.

The proposed approach is based on the same structure of the registers array used in the wave

sorter strategy. With this kind of array, data can be stored in the array by sending a datum to the

first register and later, when the second datum is sent to the first register, the value on the first

array is shifted to the second register. Thus, for every datum sent to the array to be stored, values

in registers are shifted to their respective adjacent registers. This process requires n steps. The

same number of steps is required to take data out from the array as Shown Fig 5. This approach

allows storing a new set of data in the array while the previous set is being sent back into the

memory. As mentioned in section 2, suffix sorting might imply more than one sorting iterations.

If k sorts are required, then the parallel sorting requires to ((n+n/2) * k + n) to sort an array of n

data. Thus total number of steps required can be obtained by the following equation:

International Journal of MC Square Scientific Research Vol.2, No.1 2010

29

Issn.No:0975-0932

The parallel strategy leads to a significant reduction compared to the wave sorter approach.

Furthermore, in additional sorts the necessary number of steps for sorting is equal to the number

of characters in the biggest group of identical characters divided by 2 (remember that an

additional sorting is implied if groups of identical adjacent characters appear in the array). This

implies that in practice, it is possible to reduce more than the number of steps to solve the suffix

problem.

Fig

5.Parallel sorting with two levels of comparators performance

6. Implementation and Testing:

The adaptive filter works on a rectangular region Sxy. The adaptive median filter changes

the size of Sxy during the filtering operation depending on certain criteria as listed below. The

output of the filter is a single value which the replaces the current pixel value at (x, y), the point

on which Sxy is centered at the time. The following notation is adapted from the book and is

reintroduced here:

Zmin = Minimum gray level value in Sxy.

Zmax = Maximum gray level value in Sxy

Zmed = Median of gray levels in Sxy

International Journal of MC Square Scientific Research Vol.2, No.1 2010

30

Issn.No:0975-0932

Zxy = gray level at coordinates (x, y)

Smax = Maximum allowed size of Sxy

The adaptive median filter works in two levels denoted Level A and Level B as follows:

Level A: A1= Zmed - Zmin

 A2= Zmed - Zmax

 If A1 > 0 AND A2 < 0, Go to level B

Else increase the window size

If window size <= Smax repeat level A

Else output Zxy.

 Level B: B1 = Zxy – Zmin

 B2 = Zxy – Zmin

 If B1 > 0 And B2 < 0 output Zxy

 Else output Zmed.

The algorithm has three main purposes:

(a) To remove „Salt and Pepper‟ noise.

(b) To smoothen any non impulsive noise.

(c) To reduce excessive distortions such as too much thinning or thickening of object

boundaries.

7. RESULT:

Two signals were considered for the test. These were subjected to salt and pepper noise

of unit amplitude. one form of the evolved architecture of the reconfigurable fabric during

operation, give the deviations of the output with respect to the original value of the signals. The

International Journal of MC Square Scientific Research Vol.2, No.1 2010

31

Issn.No:0975-0932

absolute error values of the filter for the 2 signals.The adaptive median filter is designed to

remove impulsive noise from images. Therefore, our algorithm‟s performance was first tested

with basic salt and pepper noise. The next test involves processing images that contain

impulsive and/or non-impulsive noise. It is well known that the median filter does not provide

sufficient smoothening of non-impulsive noise. Therefore, Gaussian and „salt and pepper‟ noise

were added to the image which was then processed by the algorithm. The Fig 6 show the

performance of the adaptive median filter.

Fig 6.Results of filtering with a 3X3 median and conditional median filter. From left to right, first

row: original Image, noisy image; second row: standard median filter, Adaptive median filter.

8. CONCLUSION

International Journal of MC Square Scientific Research Vol.2, No.1 2010

32

Issn.No:0975-0932

The proposed architecture is designed to reconfigure itself and provide real-time noise

reduction. The filter logic is implemented on a novel reconfigurable fabric designed for the

specific purpose of implementing an FIR filter using primitive operators, and is synthesized on a

Xilinx. The results obtained show the validity of the approach to adaptive noise reduction using

Evolvable Digital Filters. The filter was able to track signal variations, and retrieved the signal

data with minimal error. The architecture provides the capability of implementing the

reconfigurable fabric in a pipelined fashion and Also includes the implementation of the

pipelined version of the filter for improved speed, and to optimize the programmable processing

element at circuit level for efficient ASIC implementation of the reconfigurable fabric. The

propose architecture , which is processed one pixel per clock cycle, thus to process an image of

size 256 x 256 when a clock of 100 MHz is used and hence is suitable for real time applications

.The adaptive median filter successfully removes impulsive noise from images. Overall, the

performance is as expected and the successful implementation of the adaptive median filter is

presented.

References

[1] Zdenek Vasicek, Lukas Sekanina, Novel Hardware Implementation of Adaptive Median

Filters 978-1-4244-2277-7/08/ ©2008 IEEE

[2] Olli Vainio, Yrjö Neuvo, Steven E. Butner, A Signal Processor for Median-Based

Algorithms, IEEE Transactions on Acoustics, Speech, Processing VOL 37. NO. 9, September

1989.

[3] V.V. Bapeswara Rao and K. Sankara Rao, A New Algorithm for Real-Time Median Filtering,

IEEE Transactions on Acoustics, Speech, Processing VOL ASSP-34. NO. 6, December

1986.

[4] M. O. Ahmad and D. Sundararajan, Parallel Implementation of a Median Filtering

Algorithm, Int. Symp. on Signals and Systems, 1988.

[5] Dobrowiecki Tadeusz, Medián Szűrők, Mérés és Automatika, 37. Évf., 1989. 3.szám

[6] Xilinx Foundation Series Quick Start Guide, 1991-1997. Xilinx. Inc.

[7] Jim Torresen, “An Evolvable Hardware Tutorial”, FPL 2004,821-830

[8] [2]. L. Sekanina, “Evolvable Hardware Tutorial”, in GECCO 2007, New York

[9] . Bernard Widrow and Samuel D. Steavns, “Adaptive Signal Processing”, Pearson Edition,

2000.

International Journal of MC Square Scientific Research Vol.2, No.1 2010

33

Issn.No:0975-0932

[10]. Redmill, D. W., Bull, D. R., and Dagless, E., “Genetic synthesis of reduced complexity

filters and filter banks using primitive operator directed graphs”. IEE Proc. Circuits

Devices Syst, vol.147, pp. 303-310, 2000. Bull, D. R. and Horrocks, D. H., “Primitive

operator digital filters”, IEE Proc. Circuits, Devices and Systems, pp. 401-412, 1991.

[11]. L. Sekanina and P. Mikusek, “Analysis of Reconfigurable Logic Blocks for Evolvable

Digital Architectures”, EvoWorkshops 2008, LNCS 4974, pp. 144–153, 2008.

Evolution Hardware (EH‟05)

