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Abstract: 

Infrasound is a low frequency acoustic phenomenon that typically ranges from 0.01 to 20 

Hz. The data collected from infrasound microphones are presented online by the infrasound 

monitoring system operating in Northern Europe. Processing the continuous flow of data to 

extract optimal feature information is important for real-time signal classification.  Performing 
wavelet decomposition on the real-time signals is an alternative. In this paper, we propose a 

novel, efficient VLSI architecture for the implementation of one-dimension, lifting-based 

discrete wavelet transform (DWT). Both of the folded and the pipelined schemes are applied in 

the proposed architecture; the former scheme supports higher hardware utilization and the latter 

scheme speed up the clock rate of the DWT. Our approach uses only two FIR filters, a high-pass 

and a low-pass filter. A compact implementation was realized with pipelining techniques and 

multiple uses of generalized building blocks. The design was described in VHDL   and   the   

FPGA   implementation   and simulation were performed on the Xilinx ISE 

Keywords: DWT, Lifting, Pipeline. 

1. Introduction  

The transform of a signal is just another form of representing the signal. It does not 

change the information content present in the signal. The Wavelet Transform provides a time- 

frequency representation of the signal. It was developed to overcome the short coming of the 

Short Time Fourier Transform (STFT), which can also be used to analyze non-stationary signals. 

While STFT gives a constant resolution at all frequencies, the Wavelet Transform uses multi-

resolution technique by which different frequencies are analyzed with different resolutions. 

A wave is an oscillating function of time or space and is periodic. In contrast, wavelets 

are localized waves. They have their energy concentrated in time or space and are suited to 

analysis of transient signals. While Fourier Transform and  STFT  use  waves  to  analyze 

signals, the Wavelet Transform uses wavelets of finite energy.  
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FIG 1.Demonstraction of (a) Wave and (b) Wavelet 

The wavelet analysis is done similar to the STFT analysis. The signal to be analyzed is 

multiplied with a wavelet function just as it is multiplied with a window function in STFT, and 

then the transform is computed for each segment generated. However, unlike STFT, in Wavelet 

Transform, the width of the wavelet function changes with each spectral component. The 

Wavelet Transform, at high frequencies, gives good time resolution and poor frequency 

resolution, while at low frequencies; the Wavelet Transform gives good frequency resolution and 

poor time resolution. 

Discrete wavelet transform 

Discrete wavelet transform (DWT) has been widely used in many different fields of 

audio and video signal processing. Recently, DWT is being increasingly used as effective 

solutions to the problem of image compression. One well- known example is that DWT has been 

adopted by the JPEG2000, one of the several popular image compression standards defined by 

the Joint Picture Expert Group (JPEG), due to the efficient decomposition of a signal into several 

components (sub-bands) with DWT. In general, DWT can be implemented by direct convolution 

and several DWT architectures implemented by filter convolution have been proposed. However, 

such an implementation suffers the need of a large number of computations and a large storage 

resource. Discrete wavelet transformation (DWT) transforms discrete signal from time domain 

into time-frequency domain. The transformation product is set of coefficients organized in the 

way that enables not only spectrum analyses of the signal, but also spectral behavior of the signal 

in time. This is achieved by decomposing signal, breaking it into two components, each caring 

information about source signal. Filters from the filter bank used for decomposition come in 

pairs: low pass and high pass. The filtering is succeeded by down sampling (obtained filtering 

result is "re-sampled" so that every second coefficient is kept). Low pass filtered signal contains 

information about slow changing component of the signal, looking very similar to the original 

signal, only two times shorter in term of number of samples. High pass filtered signal contains 

information about fast changing component of the signal. In most cases high pass component is 

not so rich with data offering good property for compression. In some cases, such as audio or 

video signal, it is possible to discard some of the samples of the high pass component without 
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noticing any significant changes in signal. Filters from the filter bank are called "wavelets". 

Mathematical model of this process and the way to synthesize filter banks can be found in. 

Mallat shows that the DWT can be viewed as a multi-stage signal decomposition process using 

the basic filter bank structure shown in Fig 1. In this implementation the input signal is 

decomposed into its coarse approximation coefficients from the low-pass filter (G0) channel and 

its detail coefficients from the high-pass filter (H0) channel. Down sampling is applied after 

filtering the signal through the analysis filter bank to remove the redundancy introduced when a 

single length input is converted to a double length output. The filter bank operates recursively on 

the low-pass filtered data to generate coarser decompositions of the input signal and its 

corresponding details. Enhanced signal information and a better understanding of the signal 

behavior can be gained by observing the output of the signal at different levels of decomposition. 

Three stages of decomposition are usually considered sufficient for many applications 

 

Fig 2. Three-level analysis DWT 

3. Lifting Scheme Wavelet Transform 

The lifting scheme is a new algorithm proposed for the implementation of the wavelet transform. 

It can reduce the computational complexity of DWT involved with the convolution 

implementation. Furthermore, the extra memory required to store the results of the convolution 

can also be reduced by in place computation of the wavelet coefficient with the lifting scheme. 

The lifting scheme consists of the following three steps to decompose the samples, namely, 

splitting, predicting, and updating. Figure 3 illustrates the three steps associated with the lifting 

scheme based DWT for the one- dimensional signal:(1) Split step: The input samples l are split 

into even samples and odd samples ;(2) Predict step (P): The even samples are multiplied by the 

predict factor and then the results are added to the odd samples to generate the detailed 

coefficients;(3) Update step (U): The detailed coefficients computed by the predict step are 

multiplied by the update factors and then the results are added to the even samples to get the 

coarse coefficients. The equations of the lifting scheme for the (5,3) discrete wavelet transform is 

shown as follows, The equations of the lifting scheme for the (5,3) discrete wavelet transform is 

shown as follows, 
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where (1) h and l are the detailed and the coarse coefficients, respectively; (2) α and β are 

the predict factor and the update factor of the (5,3) filter, respectively; and (3) i and j represent 

the input sample index and the decomposition level, respectively. 

 

Fig 3 Lifting Scheme 

Predict Module 

The predict module is shown in Figure 4. As mentioned in Section , the predict module  is used to 

compute the detailed coefficients. Initially, the even sequence comes from MUX_A, then it is 

multiplied by the predict filter coefficient α, and the result is stored in Register D1. When the 

corresponding odd sequence comes from MUX_B, it will be added to the data from register D1 and 

the result will be stored in the register D2 temporarily for two clock unit. Finally, the data stored in 

D2 will pass through MUX_C and is added to the data from register D1 to generate the detailed 

coefficient. 
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Fig 4 Predict Module 

Update Module 

The update module is shown in Figure 5. As mentioned in Section 2, the update module is used to 

compute the coarse coefficients. The detailed coefficient coming from the predict module is firstly 

multiplied by the update filter coefficient β. The result of the previous step is then added to the 

corresponding even sequence and the sum is temporarily stored in the register D3 for two clock unit. 

Then the data stored in D3 will pass through the MUX_E and is added to the delayed detailed 

coefficient multiplied by β to get the coarse coefficient. 

 

Fig 5 Update Module 

Register Module 

The register module contains four sets of units denoted as register set A, register set B, register set C, and 

register set D. The main function of these register is to temporarily keep the data to meet the timing plan. 

Register set A is used to keep the input samples for the computation of the coarse coefficients. Register 

set B and Register set C are used to temporarily store the data for computing the final detailed 

coefficients and coarse coefficients, respectively. Register s e t  D is used to store the coarse coefficients 

generated by the predict module for the computation of the detailed coefficients of the next 
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decomposition level. 

THE 1 D DWT ARCHITECTURE 

The 1D DWT levels 2 to 9 can be used as components of a feature vector. This implies that the 

implementation of nine levels is necessary. In our experiment, only three levels of a 16- 

coefficients Daubechies orthogonal 1D DWT filter have been implemented. It should be noted that our 

implementation is scalable for different filter lengths and additional levels. For the polyphone 

structure, the filter coefficients are divided into even and odd parts. We represent the filter 

coefficients using the 2’s complement, fixed point notation by incrementing the word length during 

the calculation to 18 bits so as to maintain a good SNR at the output. When compared with the 

architectures and the proposed architecture requires the same number of adders and multipliers 

(shifters) shown figure 6. 

 

Fig 4. 1 D DWT ARCHITECTURE 

4. Simulation Results 

In order to quantify the performance of the implemented architecture, we conducted 

several tests using different sets of input data. The decomposition capability has been 

demonstrated for three different wavelets (db2, db4 and db8). Input data word lengths of 8 bit 

fixed point format have been used in the simulations. shows the corresponding waveforms of the 

approximations and details computed using the proposed 1D DWT architecture. the paper 
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requiring the delay up to 2*Ta+Tco+Tsu, the architecture proposed in this article can shorten the 

delay of the critical path to a Ta due to the usage of the pipelined scheme, where Ta is the delay 

of an adder, Tco is the delay of a register, and Tsu is the setup time of a register. The proposed 

architecture was successfully synthesized using virtex device family from Xilinx Corp. Table 2 

shows the simulation results of the synthesis report generated by Xilinx ISE. 

Device Utilization for v50ecs144 

    Resource   Used   Avail Utilization 

IOs  44 94 

46.81%    
Function Generators 737  
1536 47.98%   
CLB Slices 369 768 

48.05%   
Dffs or Latches 353        1818 19.42% 

5. Conclusion 

This paper presents a design framework for the implementation of one-dimension, lifting-based 

discrete wavelet transform (DWT) an FPGA using a polyphase structure. The proposed 

architecture extracts enhanced signal information from infrasonic data in real-time using only 

two FIR filters, a high-pass and a low-pass filter. The energies of the 1D wavelet levels 2 to 9 

can be used along with the skewness and kurtosis as inputs to the infrasound classifiers. In this 

paper, an efficient1 D DWT architecture utilizing folded  and pipelined method has been 

proposed. The architecture has been verified successfully and realized with the FPGA device of 

Virtex family from Xilinx Corp. 

6. Reference 

[1] P. G. Brown, R. W. Whitaker, and D. O. ReVelle, “Multi-station infrasonic observations of 

two large bolides: Signal interpretation and implications for monitoring of atmospheric 

explosions,” Geophys. Res. Lett., vol. 29, no.1636, 2002. 

[2] J. B. Johnson, R. C. Aster, and P. R.Kyle, “Volcanic eruptions observedwith infrasound,” 

Geophys. Res. Lett., vol. 31, Jul. 2004. 



 

International Journal of MC Square Scientific Research Vol.1, No.1,2009    

 

8 

 

[3] J. Chilo, A. Jabor, and Th. Lindblad, “Filtering and extracting features from infrasound data,” 

in 14th IEEE-NPSS Real-time Conf., Stockholm, Sweden, Jun. 2005, pp. 451– 455. 

[4] K. Waldemark and L. Liszka, “High resolution observations of infrasoundgenerated by the 

supersonic flights of concorde,” J. Low Frequency Noise Vibration, vol. 14, 1995. 

[5] L. Liszka, “Infrasonic observations of the Gas Explosion on April 26–27, 1995,” J. Low 

Frequency Noise Vibration, vol. 15, pp. 1–5, 1996, , in J. Low Frequency Noise Vibration, 

London, vol. 14. 

[6] L. Liszka, “Long-distance propagation of infrasound from artificialsources,” J. Acoust. 

Society Amer., vol. 56, pp. 1383–1388, 1974. [7] P. Campus, “The IMS infrasound network and 

its potential for detection of events:Examples of a variety of signals recorded around the world,” 

Inframatics Newsletter no. 6, Jun. 2004. 

[8] L. Liszka, Cognitive Information Processing in Space Physics andAstrophysics. Tucson, AZ: 

Pachart Publishing House, 2003, ISBN0-88126-090-8. 

 [9] L. Liszka, Infrasound—A Summary of 35 Years of Infrasound Research 2005. 

[10] G. Strang and T. Nguyen,Wavelets and Filter Banks. Wellesley, MA: Wellesley College, 

1996. 

[11] E. D. Schmitter, “Characterisation and classification of natural transients,” Trans. Eng., 

Comput. Technol., vol. 13, May 2006. 

[12] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet 

representation,” IEEE Trans. Pattern. Anal.Machine Intell.,vol. 2, pp. 674–693, Dec. 1989. 

[13] A. Benkrid, K. Benkrid, and D. Crookes, “Design and implementation of a generic 2-D 

Orthogonal discrete wavelet transform on FPGA,” in Proc. 9th Annu. IEEE Symp. on Field-

Programmable Custom Computing Machines, 2001, pp. 190–198. 

[14] I. Daubechies, Ten Lectures onWavelets. Philadelphia, PA, 1992, Society for Industrial and 

Applied Mathematics. 

 

 


